Load four audio files, all containing the same melody:
x1, sr1 = librosa.load('audio/sir_duke_trumpet_fast.mp3')
x2, sr2 = librosa.load('audio/sir_duke_trumpet_slow.mp3')
x3, sr3 = librosa.load('audio/sir_duke_piano_fast.mp3')
x4, sr4 = librosa.load('audio/sir_duke_piano_slow.mp3')
print(sr1, sr2, sr3, sr4)
Listen:
ipd.Audio(x1, rate=sr1)
ipd.Audio(x2, rate=sr2)
ipd.Audio(x3, rate=sr3)
ipd.Audio(x4, rate=sr4)
Compute chromagrams:
hop_length = 256
C1_cens = librosa.feature.chroma_cens(x1, sr=sr1, hop_length=hop_length)
C2_cens = librosa.feature.chroma_cens(x2, sr=sr2, hop_length=hop_length)
C3_cens = librosa.feature.chroma_cens(x3, sr=sr3, hop_length=hop_length)
C4_cens = librosa.feature.chroma_cens(x4, sr=sr4, hop_length=hop_length)
print(C1_cens.shape)
print(C2_cens.shape)
print(C3_cens.shape)
print(C4_cens.shape)
Compute CQT only for visualization:
C1_cqt = librosa.cqt(x1, sr=sr1, hop_length=hop_length)
C2_cqt = librosa.cqt(x2, sr=sr2, hop_length=hop_length)
C3_cqt = librosa.cqt(x3, sr=sr3, hop_length=hop_length)
C4_cqt = librosa.cqt(x4, sr=sr4, hop_length=hop_length)
C1_cqt_mag = librosa.amplitude_to_db(abs(C1_cqt))
C2_cqt_mag = librosa.amplitude_to_db(abs(C2_cqt))
C3_cqt_mag = librosa.amplitude_to_db(abs(C3_cqt))
C4_cqt_mag = librosa.amplitude_to_db(abs(C4_cqt))
Define DTW functions:
def dtw_table(x, y, distance=None):
if distance is None:
distance = scipy.spatial.distance.euclidean
nx = len(x)
ny = len(y)
table = numpy.zeros((nx+1, ny+1))
# Compute left column separately, i.e. j=0.
table[1:, 0] = numpy.inf
# Compute top row separately, i.e. i=0.
table[0, 1:] = numpy.inf
# Fill in the rest.
for i in range(1, nx+1):
for j in range(1, ny+1):
d = distance(x[i-1], y[j-1])
table[i, j] = d + min(table[i-1, j], table[i, j-1], table[i-1, j-1])
return table
def dtw(x, y, table):
i = len(x)
j = len(y)
path = [(i, j)]
while i > 0 or j > 0:
minval = numpy.inf
if table[i-1][j-1] < minval:
minval = table[i-1, j-1]
step = (i-1, j-1)
if table[i-1, j] < minval:
minval = table[i-1, j]
step = (i-1, j)
if table[i][j-1] < minval:
minval = table[i, j-1]
step = (i, j-1)
path.insert(0, step)
i, j = step
return numpy.array(path)
Run DTW between pairs of signals:
D = dtw_table(C1_cens.T, C2_cens.T, distance=scipy.spatial.distance.cosine)
path = dtw(C1_cens.T, C2_cens.T, D)
Listen to the both recordings at the same alignment marker:
path.shape
i1, i2 = librosa.frames_to_samples(path[113], hop_length=hop_length)
print(i1, i2)
ipd.Audio(x1[i1:], rate=sr1)
ipd.Audio(x2[i2:], rate=sr2)
Visualize both signals and their alignment:
Try each pair of audio files among the following:
ls audio/sir_duke*
Try adjusting the hop length, distance metric, and feature space.
Instead of chroma_cens
, try chroma_stft
or librosa.feature.mfcc
.
Try magnitude scaling the feature matrices, e.g. amplitude_to_db
or $\log(1 + \lambda x)$.